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Abstract. The temporal energy spectrum €'."if) and the uncertainty product 
Ap"'" ( t )hx ' ' " ( t )  are derived from an analytical solution $(x, t )  of the initial-boundary-value 
problem for the Schrodinger equation of a particle contained between moving potential 
walls at x = f s ( t ) .  which are set in motion according to an arbitrary (non-relativistic) 
translation s = s i r )  at time f = 0. Both symmetrical (s) and antisymmetrical (a) particle 
states are considered as initial conditions in the region -s(O) s x 5 +s(O). The physical 
implications of the compression and expansion of the probability density by the moving 
walls on the wave mechanics of the particle are discussed. The results are understandable 
within the statistical interpretation of quantum theory. 

1. Introduction 

Solutions of the time-dependent Schrodinger equation are not only of physical 
importance in view of the peculiarities this parabolic equation exhibits in time- 
dependent situations (Husumi 1953, Lewis and Riesenfeld 1969, Stutz and Schlitt 
1970, Borghese et al 1974, Wilhelm and Hong 1980), but also of theoretical interest 
due to the obvious mathematical difficulties. Exact (non-perturbation) analytical 
solutions of the Schrodinger equation with moving boundary conditions have not 
apparently been achieved previously. For these reasons, we treat the simple, but 
fundamental, initial-boundary-value problem for the wavefunction $(x, t )  of a particle, 
which is contained between infinite potential walls U = CC at x = * s ( t ) .  These 'walls' 
are initially at x =*s(O)=*a,  and are set in motion at time r = O  according to a 
non-relativistic (Ii(t)/ << c) ,  but otherwise arbitrary, translation law s = s ( t ) .  Both 
expansion ( i ( t )  > 0) and contraction ( i ( t )  < 0) of the 'box' are considered. 

The problem under consideration can be treated both by Laplace transformation 
and finite integral transformation for arbitrary' wall motions s (t)  (Wilhelm 1982). 
These methods lead, however, to complicated integral equations which do not appear 
to be solvable in closed form (Wilhelm 1982). Furthermore, the moving-boundary- 
value problem for the Schrodinger equation can be dealt with by group theory in the 
case of special wall motions s ( t ) .  The latter approach is frequently used for the solution 
of nonlinear partial differential equations (e.g. gas dynamics (Liron and Wilhelm 
1975), plasma dynamics (Wilhelm 1973), and hydrodynamic quantum mechanics 
(Janossy and Ziegler 1963)). For these reasons, the initial-boundary-value problem 
for the one-particle Schrodinger equation with two moving potential walls at x = * s ( t )  
is solved herein by an extended Fourier method with x- and t-dependent eigenfunc- 
tions, which results in elegant analytical solutions. The time dependence of the 
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eigenfunctions considers the temporal change of the region - s ( t )  5 x s + s ( t )  in which 
the spatial (x)  Fourier series expansion is carried through. As initial conditions, 
the known symmetrical and antisymmetrical wavefunctions of the particle in the 
undeformed box -a s x s + a  are chosen. 

The method of x- and t- dependent eigenfunctions reduces the mathematical 
problem under consideration to an infinite system of coupled first-order differential 
equations with variable coefficients for the Fourier amplitudes 4k ( t )  of the wavefunction 
$(x, t ) .  This system is transformed to coupled Volterra integral equations by integra- 
tion, which are solved by analytical methods for the functions $ k ( t ) .  Thus, exact 
Fourier series solutions are obtained for the wavefunction $(x, t )  of the particle in 
the box with moving walls. From the latter, analytical formulae for the time-dependent 
energy spectrum and uncertainty relation of the particle are deduced. The effects of 
wall motion on the quantum dynamics of the particle are discussed. 

2. Initial-boundary-value problem 

The temporal development of the (non-relativistic) wavefunction $(x, t )  of a particle 
m contained in the well between two infinite potential walls U = 00 at x = * s ( t  = 0) = 
* a  (figure l), which are set into motion at time t = 0 according to an arbitrary 
translation law s ( t ) ,  is determined by the initial-boundary-value problem for the 
Schrodinger equation with moving boundary conditions: 

a$/at = i ( ~ / 2 m )  a2$/ax2 - s ( t ) < x  < + s ( t )  O < t < i  (1) 

where 

s ( t  = 0 )  = a .  (4) 

Figure 1. One-dimensional box with moving potential walls U = CC at x = * s ( t )  

The function s ( t )  is related to the speeds v , ( t )  = *ds(t)  dt of the walls at x = * s ( t )  by 

( 5 )  s ( t )  = a * lo' v , ( t ' )  dt' O s t < f  

where 

O c s ( t )  s a  s ( t  = f )  = 0 O < f < C C  (6) 
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or 

a <s(t)<aO s(t =?)<a3 O < f < a 3  (7) 

depending on whether the potential walls at x = *s(t) move towards (equation (6)) 
or away from (equation (7)) each other. Since the Schrodinger equation is non- 
relativistic, the wall speeds are assumed to be small compared with the speed of light, 
\u,(t)l<< c. Otherwise, s ( t )  and v , ( f )  are arbitrary, physically well behaved functions 
of time. 

The initial condition (2) is a normalisable function G0(x), which is compatible with 
the uncertainty principle for the particle in the box -a < x  < + a .  We take for i,b0(x) 
any one of the symmetrical (s) or antisymmetrical (a) normalised eigenfunctions of 
the box particle m in the nth energy state E",'(O) = (.rr2A2/8maZ)n2 (Schiff 1955): 

+"ox) = cos (n~x /2a )  -a < x  < + a  n = 1 , 3 , 5 , .  . . (8) 

$:(X) = a-l" s i n ( n ~ x / 2 a )  -a < x  < + a  n = 2 , 4 , 6 , .  . . . (9) 
The initial normalisation j_',"$o(x)2 dx = 1 of the complex wavefunction $(x, t )  remains 
conserved for t > O ,  since the probability density p(x, t )  = $(x, t)*$(x, t )  is conserved 
for the boundary conditions (3). The symmetric and antisymmetric initial conditions 
(equations (8) and (9) respectively) for the states n give, for the particle in the box 
-a s x s + a ,  an initial momentum uncertainty 

1 , 3 , 5 , .  . * 
= {2 ,4 ,6 , .  . . '  

*Ap"'"(O) = f h(n7r/2a) 

3. Analytical solutions 

For the symmetric (s) and antisymmetric (a) initial conditions (8) and (9), the solutions 
$(x, t )  of the initial-boundary-value problem (1)-(3) with homogeneous boundary 
conditions are necessarily symmetric and antisymmetric respectively. In the absence 
of boundary motion, s ( f )  =a,  the eigenfunctions of equation (1) would be 

For these reasons, we choose the normalised eigenfunctions of equation (1) for the 
variable region - s ( t ) s x  s + s ( t )  as 

T X  1 ,3 ,5 ,  * . . 
k = { 2 , 4 , 6 , . . .  

where the eigenvalues k are determined by the homogeneous boundary conditions 
(3). The orthogonality relations for the x- and t-dependent eigenfunctions are 

Any symmetric (s) or antisymmetric (a) solution $(x, t )  of equations (1)-(3) can be 
represented by the expansion in orthogonal eigenfunctions: 

(LS*'"(x, t )  = 1 $;a(t)f;a(X, f )  
k 
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where 
+ S ( t l  

rL"k . ( r )  = f $s*a(~ ,  t)f;a(x, t )  dx 
--S(f l  

are the Fourier amplitudes (by equation ( 1 2 ) ) .  Equations (11) - (14)  extend Fourier's 
theorem to series expansions in time-dependent regions - s ( t )  s x s + s ( t ) .  

( t )  are determined by differential equations, which are 
obtained by multiplication of equation (1) with f 2 a ( ~ ,  t )  and integration over the 
variable region - s ( t ) c x  s + s ( t ) :  

The Fourier amplitudes 

where 

with 
.+n/2 

for k =i and k Zi ( j ,  k = 1 ,  3, 5 , .  . . (s) or j ,  k = 2 , 4 , 6 , .  . . (a)). In particular, 

c;; = 112 = cy j = k  (20) 

C;; = T k (  f j # k  ( 2 1 )  
cos(k + j).rr/2 cos(k - j).rr/2 

k + j  k - j  

where cos(k f j).rr/2 = ( -  l)'k*"'2. In view of the boundary conditions (3), the square 
brackets in equations ( 1 6 )  and (17) vanish. By using equations ( 1 1 )  and ( 1 4 )  the 
integral ( 1 6 )  reduces to - ( k ~ / 2 s ( t ) ) ~ $ ; ~ ( t ( f ,  

According to equations (15)-(  18) ,  the Fourier amplitudes of the symmetrical (s) 
and antisymmetrical (a) solutions satisfy the initial-value problem 

(L;a(f = O ) = S k n  (23) 
for coupled differential equations of first order. By equations (8), (9) and ( 1 4 )  all 
initial values with k # n vanish but $Lsn.a(t = 0) = 1 .  The subsequent transformations 
(with integrating factor) 
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reduce equations (22) and (23) to the simpler initial-value problem with variable 
coefficients: 

and t ( 7 )  is given by inversion of the known function s ( t )  = ae‘, equation (25). Since 
k = 1,3 ,5 ,  . . . for the symmetric (s) and k = 2 ,4 ,6 ,  . . . for the antisymmetric (a) 
solutions $(x, t ) ,  the matrices C”” in equation (26) are of the form 

0 c;3 c;, . * .  c;”\ 
0 c;, * . .  B . )  

\C”l C”3 C”, . . . 0 1 
1 0 C L  cSb . . . c;”\ 

where 

by equation (21). Integration of equations (26) and (27) demonstrates that the 
initial-value problem is mathematically equivalent to the system of coupled Volterra 
integral equations 

.T 

(33) 

The method of successive approximations yields as solutions in the Nth approximation 
( N  = 0, 1,2 ,  * . .): 
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Hence, the solution in the Nth approximation is 

+ 1 C;,? 1 C:;aC:fT(~, kjjiin)+ . . . 
j # k  i t j  

x 1 C:;"C:~T(T,  kjjiill. . . rrssttg) (N - 1 sums) 
I#S 

where 

X1O" d~~ JOT3 dr2  loT2 drl expi[o(TN)(kZ- j 2 )  

is an N-fold integral, N = 1 , 2 , 3 , .  . . . In the absence of the multiple integrals 
T(T ,  k.. . g ) ,  the multiple sums in equation (38) could be written as kn elements 
of the product of N = 0, 1, 2, . . . matrices C since 

( C ) i n = a k n ,  9 * * 9 (c)rc= 1 ckj 1 cji 1 Cif . . crs 1 csrcrg  (N - 1 sums). 
j t k  i # I  l # j  s f r  I f s  

(40) 

From the analytical solution (37) for 9 2 a ( ~ ) ,  the solution for 9";"() is obtained as 

%*(t) = *2"(.r = I n ( s ( r ) / a ) )  t 3 0 .  (41) 
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According to equations (24) and (25) ,  the corresponding solutions for the (complex) 
Fourier amplitudes are 

[ ih (kr ) ' / '  dt' 3 
2m 2 s(t')' ' 

$ 2 a ( t )  = q'";"(t) exp -- - - (42) 

Thus, we find the following Schrodinger fields 4ssa(~ ,  r )  for the symmetric (s) and 
antisymmetric (a) initial conditions (8) and (9), which determine the quantum dynamics 
of the particle m in the contracting or expanding box: 

1 , 3 , 5 ,  9 .  . 
= { 2 , 4 , 6 , .  . . (43) 

The probability densities P'.~(x,  t )  = ($(x, t ) J / ( x ,  t))s'a of the particle in the symmetric 
(s) and antisymmetric (a) box states are 

1 [ ih (7~;' 1' dt' ] 
p S 3 a ( ~ ,  t )  = -1 1 +Jrssa(t)'u:"(t) exp -- - (k'-j') - 

1 , 3 , 5 , .  . . 
1' = { 2 , 4 , 6 , ,  . .' 

s(t)  j k 2m 2 0 s(t')' 

xcos( . 7 T  x )cos ( 7T x ) 
sin 'Z s(t) sin k-- 2 s( t )  (44) 

Equations (43) and (44) reduce to the (s, a) wavefunctions and probability densities 
of the particle in the box with fixed walls for s (t)  = a : 

ih n r  1 , 3 , 5 ,  * * . 
4 S , a ( x ,  t )  = a-1'2 'os sin ( n  T 2 a ?)exp[-- 2m (-)'t] 2a n = (2 ,  4, 6, . . .  

cos2 1 , 3 , 5 , .  * . 
p s ' a ( ~ ,  t ) = a - '  sin' (n5 I) = \ 2 , 4 , 6 , .  . . 

(45) 

since 92'";"(t) = S k n  for s ( t )  + a ( T  + 0)  by equations (25), (38) and (39). 
Since the matrices ( A k j ( T ) )  = CC";~" exp[iw(~)(k' - j ' ) ] )  and ( B k j ( T ) )  = Ji (Aj(+)) dr '  

do not commute, equation (26) probably has no closed-form solution. Stepanov (1963) 
has demonstrated that the successive approximations of linear systems of differential 
equations converge in 0 < / T I  <CO for 7-dependent coefficients which are continuous 
in O < ~ T ~ < C O .  In the case of the system (33) with 7-dependent coefficient factors 
F k j ( T )  = exp[iw(7)(k2-jZ)], where I F k j ( 7 ) I  = 1, the applicability of the method of suc- 
cessive approximations is obvious from the convergence of the solution of the system 

integrals of order N = 0 , 1 , 2 ,  . . . reduce for constant coefficients to T(T,  k . . . E )  = 
r N / N ! ) .  

The analytical solution (38) is rather involved since multiple T integrals have to 
be worked out for given functions w ( 7 )  or s ( t ) ,  equation (28). For complicated 
translations s(t) ,  it is advisable to solve the initial-value problem (22) and (23) 
numerically. 

q k ( 7 )  =6kn + x j + k  c k ,  ji q j ( T ' )  dT', which iS q k ( 7 )  =eXp(CT)vk(O) (the multiple 7 
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4. Particle energy 

Before the deformation of the box -a sx s + a  occurs, the particle has a (fixed) 
energy eigenvalue E",'(O) in each of the symmetric (s) and antisymmetric (a) states 
n. According to the associated (s, a) wavefunctions (8) and (9) 

1 , 3 , 5 , .  . . 
= (2 ,4 ,6 ,  . . ,' 

2 h2 nrr 
2m 2a 

E"" (0)  = - (-) (47) 

These energy ei4envalues change with time when the walls of the box are moved. At 
any time 0 < t < the expectation value of the particle energy is 

where 

with 

by equatibns (43), (42) and (22). The terms in equation (50) yield, in the same 
sequence, the following contributions to the particle energy (48): 

The derivations of equations (52) and (54) by means of the orthogonality relations 
(12) are obvious, whereas equation (53) has been obtained from 

where 
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by equation (19). Summation of equations (52)-(54) gives for the expectation value 
of the particle energy 

(57) 

The complex term in equation (57) vanishes since the matrix is skew-symmetric, 
C:: = -CX. Thus, we find for the average energy of the particle in the contracting 
or expanding box the simple but fundamental result 

S( t )  +ih - c;; (@" (t)$;"(r) + 4;s" (t)@" ( t ) ) .  
s ( f )  k j P k  

1 , 3 , 5 , .  . 
= ( 2 , 4 , 6 , .  . '. . ( 5 8 )  

The Fourier series (58) represents a continuous function of time for 0 s t s t^. Accord- 
ingly, the energy eigenvalues E""(t) of the particle form a continuous spectrum in t 
space for any initial s,a state n.  

E",'(t) reduces to the initial energy (47) for t + 0 since W"(T = ln(s(t)/a))  + 8 k n  
for s ( r )+a  in equation (58 ) .  It is seen that 

E;" ( t )  <E;" (0) 

E"" ( t )  > E"" (0) 

for s ( t )  > a 

for s ( t )  < a. 
(59) 

Accordingly, the particle energy E;" (t)  (i) increases or (ii) decreases with time 
depending on whether the box is (i) compressed or (ii) expanded. This transient 
behaviour is explained by the uncertainty principle according to which the particle 
expectation energy E""") = ( ~ " " ( t ) ~ / 2 m )  must (i) increase and (ii) decrease with time 
as the particle position uncertainty Ax""(tt) - s ( t )  is (i) decreased and (ii) increased by 
compression and expansion of the box, respectively. 

5. Uncertainty relation 

According to the general uncertainty principle derived by means of the Schwartz 
inequality the variances Api  and Aqi of the non-commuting i components of the 
conjugate dynamical variables p and q are interrelated by the inequality Api  Aqi  2 h/2, 
that is, for any microscopic system Api  Aqi = .c ih/2 where 2 1 is a characteristic 
constant for every stationary system depending on its quantum numbers. For a proper 
transient system, such as a particle contained between moving walls, one expects the 
state function to be time dependent, = e i ( t ) .  

The variances of the position and momentum of the particle between moving walls 
at x = * s ( t )  are given by   AX^.")^ = ( ( X ~ * " - ( X ~ . " ) ) ~ )  = ( ( x ' , " ) ~ )  and ( A p s s a ) 2  = 
( ( p " " - ( ~ ~ , " ) ) ~ )  = ((p'.")'), since (x'.") = 0 and (p"") = 0 for reasons of symmetry (see 
figure 1). Accordingly (initial-state subscript n omitted) 

a2 
-sir) ax 

+s(r) 

(AP"")~ = -ti2 [ (LSva(x, r )  7 $'*"(x, t )  dx 

+s(r) 

  AX^*")^ = [ $*"(x, t)x2$"'"(x, t )  dx. 
- 5 i 1 )  
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Since their Fourier series can be differentiated term by term for the boundary 
conditions (3), the symmetric (s) and antisymmetric (a) wavefunctions (43) yield 

where 

that is, 

flsf = 1 * 6 COS kn/.rr2k2 j = k  

n;;.=3T(5)3( (i + kI2 ) j # k .  (66) 
cos( j - k ) ~ / 2  COS( j + k).rr/2 

(i - k)' 

Combining equations (62) and (63) yields the time-dependent uncertainty relation for 
a particle in the contracting or expanding box: 

Ap"'"(t)Ax"'"(t) = f R ~ " ' " ( t )  (67) 

where 

The result (68) shows that the uncertainty product (67) is real and time dependent 
for a particle contained between moving walls at x = * s ( t ) .  In the limit t + 0, equation 
(68) reduces to the state function of a particle between fixed walls 

(69) 
.rr 2 2 1 /2  1 , 3 , 5 ,  * * . 

= ( 2 , 4 , 6 ,  . . . l i m E s * a ( t ) = ~ n ( l * 6 c o s n . n / . r r  n ) 
t-0 

since 9;'a(f)+6j, ,  and 9 2 a ( f ) + 6 k n  for s ( t ) + a  by equation (38). As to order of 
magnitude, equations (62) and (63) indicate that ApS*'"(t) - ApsVa(0)a/s(t) and Ax""(t) - 
s ( t ) .  For this reason, the uncertainty product (A/2)~"'"(t) (i) decreases with t in case 
of compression and (ii) increases with t in case of expansion of the box (equation 
(68)), but only slightly since T = ln(s(t)/a).  Comparison of equations (58) and (62) 
reveals that the particle energy E"'"(t) equals at all times the energy Ap"a(t)2/2m of 
the momentum uncertainty for any initial state n, 

Ap"a(t)2/2m = E"'"(t) o s r < F .  (70) 

It follows that, on average, the walls perform (i) positive or (ii) negative work on the 
particle if the box is (i) compressed or (ii) expanded. 

The results presented can be understood within the frame of the statistical interpre- 
tation of quantum mechanics (Schiff 1955). 



Particle contained between moving potential walls 

Acknowledgments 

This work is supported by the US Office of Naval Research. 

References 

Borghese F, Denti P and Ruggeri T 1974 Int. J. Theor. Phys. 9 55 
Husumi K 1953 Prog. Theor. Phys. 9 381 
Janossy L and Ziegler M 1963 Acta Phys. Acad.  Sci. Hung. 16 37 
Lewis H R and Riesenfeld W B 1969 J. Math. Phys. 10 1458 
Liron N and Wilhelm H E 1975 J. Math. Phys. 16 2490 
Schiff L I 1955 Quantum Mechanics (New York: McGraw-Hill) 
Stepanov W W 1963 Differential Equations (Berlin: VEB Verlag d. Wissenschaften) 
Stutz C and Schlitt D W 1970 Phys. Reo. A 2 897 
Wilhelm H E 1973 J.  Marh. Phys. 14 1430 
- 1982 to be published 
Wilhelm H E and Hong S H 1980 Acta Phys. Acad.  Sci. Hung. 48 425 

2159 


